Weak Convergence and Empirical Processes

€ 155,49
Lieferbar innerhalb von 2-3 Tagen
November 2000



This book explores weak convergence theory and empirical processes and their applications to many applications in statistics. Part one reviews stochastic convergence in its various forms. Part two offers the theory of empirical processes in a form accessible to statisticians and probabilists. Part three covers a range of topics demonstrating the applicability of the theory to key questions such as measures of goodness of fit and the bootstrap.


1.1. Introduction.- 1.2. Outer Integrals and Measurable Majorants.- 1.3. Weak Convergence.- 1.4. Product Spaces.- 1.5. Spaces of Bounded Functions.- 1.6. Spaces of Locally Bounded Functions.- 1.7. The Ball Sigma-Field and Measurability of Suprema.- 1.8. Hilbert Spaces.- 1.9. Convergence: Almost Surely and in Probability.- 1.10. Convergence: Weak, Almost Uniform, and in Probability.- 1.11. Refinements.- 1.12. Uniformity and Metrization.- 2.1. Introduction.- 2.2. Maximal Inequalities and Covering Numbers.- 2.3. Symmetrization and Measurability.- 2.4. Glivenko-Cantelli Theorems.- 2.5. Donsker Theorems.- 2.6. Uniform Entropy Numbers.- 2.7. Bracketing Numbers.- 2.8. Uniformity in the Underlying Distribution.- 2.9. Multiplier Central Limit Theorems.- 2.10. Permanence of the Donsker Property.- 2.11. The Central Limit Theorem for Processes.- 2.12. Partial-Sum Processes.- 2.13. Other Donsker Classes.- 2.14. Tail Bounds.- 3.1. Introduction.- 3.2. M-Estimators.- 3.3. Z-Estimators.- 3.4. Rates of Convergence.- 3.5. Random Sample Size, Poissonization and Kac Processes.- 3.6. The Bootstrap.- 3.7. The Two-Sample Problem.- 3.8. Independence Empirical Processes.- 3.9. The Delta-Method.- 3.10. Contiguity.- 3.11. Convolution and Minimax Theorems.- A. Appendix.- A.1. Inequalities.- A.2. Gaussian Processes.- A.2.1. Inequalities and Gaussian Comparison.- A.2.2. Exponential Bounds.- A.2.3. Majorizing Measures.- A.2.4. Further Results.- A.3. Rademacher Processes.- A.4. Isoperimetric Inequalities for Product Measures.- A.5. Some Limit Theorems.- A.6. More Inequalities.- A.6.1. Binomial Random Variables.- A.6.2. Multinomial Random Vectors.- A.6.3. Rademacher Sums.- Notes.- References.- Author Index.- List of Symbols.


"...succeeds and complements Billingsleys classic work and will become the standard source of study and reference for students and researchers...." The Statistician
EAN: 9780387946405
ISBN: 0387946403
Untertitel: With Applications to Statistics. 'Springer Series in Statistics'. 1st ed. 1996. Corr. 2nd printing 2000. Book. Sprache: Englisch.
Verlag: Springer
Erscheinungsdatum: November 2000
Seitenanzahl: 532 Seiten
Format: gebunden
Es gibt zu diesem Artikel noch keine Bewertungen.Kundenbewertung schreiben