EBOOK

Analog Circuit Design


€ 72,49
 
epub eBook
Sofort lieferbar (Download)
September 2011

Beschreibung

Beschreibung

Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions will aid systems designers with elegant and practical design techniques that focus on common circuit design challenges. The book's in-depth application examples provide insight into circuit design and application solutions that you can apply in today's demanding designs. Online support package, including LTspiceO software, Design Notes, plus videos and data sheets can be found at: www.elsevierdirect.com/companions/9780123851857Covers the fundamentals of linear/analog circuit and system design to guide engineers with their design challengesBased on the Application Notes of Linear Technology, the foremost designer of high performance analog products, readers will gain practical insights into design techniques and practiceBroad range of topics, including power management tutorials, switching regulator design, linear regulator design, data conversion, signal conditioning, and high frequency/RF designContributors include the leading lights in analog design, Robert Dobkin, Jim Williams and Carl Nelson, among others

Inhaltsverzeichnis

1;Cover;1 2;Analog Circuit Design;4 3;Copyright;5 4;Dedication;6 5;Contents;10 6;Acknowledgments;14 7;Introduction;15 8;Publishers Note;12 9;Foreword;17 10;Part 1 -Power Management;18 10.1;Section 1 -Power Management Tutorials ;20 10.1.1;1 -Ceramic input capacitors cancause overvoltage transients;21 10.1.1.1;Plug in the wall adapter at your own risk;21 10.1.1.2;Building the Test Circuit;21 10.1.1.3;Turning on the switch;22 10.1.1.4;Testing a portable application;22 10.1.1.5;Input voltage transients with different input elements;22 10.1.1.6;Optimizing Input Capacitors;23 10.1.1.7;Conclusion;23 10.1.2;2 -Minimizing switching regulator residue in linear regulator outputs;24 10.1.2.1;Introduction;24 10.1.2.1.1;Switching regulator AC output content;24 10.1.2.1.2;Ripple and spike rejection;25 10.1.2.1.3;Ripple/spike simulator;28 10.1.2.1.4;Linear regulator high frequency rejection evaluation/optimization;29 10.1.2.2;References;31 10.1.3;3 -Power Conditioning for notebook and palmtop systems;35 10.1.3.1;Introduction;35 10.1.3.1.1;LT1432 driver for high efficiency 5V and 3.3V buck regulato r;35 10.1.3.1.2;Circuit description;36 10.1.3.1.3;BICMOS switching regulator family provides highest step-down efficiencies;37 10.1.3.1.4;Surface mount capacitors for switching regulator applications;39 10.1.3.1.5;High efficiency linear supplies;39 10.1.3.1.6;Power switching with dual high side micropower N-channel MOSFET drivers;40 10.1.3.1.7;LT1121 micropower 150mA regulator with shutdown;41 10.1.3.1.8;Cold cathode fluorescent display driver;41 10.1.3.2;Battery charging;42 10.1.3.2.1;Lead acid battery charger;42 10.1.3.2.2;NiCAD charging;43 10.1.3.2.3;LCD display contrast power supply;44 10.1.3.2.4;A 4-cell NiCad regulator/charger;44 10.1.3.3;Power supplies for palmtop computers;47 10.1.3.3.1;2-Cell input palmtop power supply.circuits;48 10.1.3.3.2;LCD bias from 2 AA cells;48 10.1.3.3.3;4-Cell input palmtop power supply.circuits;48 10.1.3.3.4;A CCFL backlight driver for palmtop.machines
;51 10.1.4;4 -2-Wire virtual remote sensing for voltage regulators;52 10.1.4.1;Introduction;52 10.1.4.2;"Virtual" remote sensing;52 10.1.4.3;Applications;53 10.1.4.4;VRS linear regulators;53 10.1.4.5;VRS equipped switching regulators;55 10.1.4.6;VRS based isolated switching supplies;55 10.1.4.7;VRS halogen lamp drive circuit;62 10.1.4.8;References;62 10.1.4.9;Appendix A A primer on LT4180 VRS operation;66 10.2;Section 2 -Switching Regulator Design;74 10.2.1;5 -LT1070 design manual;76 10.2.1.1;Introduction;76 10.2.1.2;Preface;77 10.2.1.2.1;Smaller versions of the LT1070;77 10.2.1.2.2;Inductance calculations;77 10.2.1.2.3;Protecting the magnetics;78 10.2.1.2.4;New switch current specification;78 10.2.1.2.5;High supply voltages;78 10.2.1.2.6;Discontinuous “oscillations” (ringing);79 10.2.1.3;LT1070 operation;79 10.2.1.4;Pin functions;80 10.2.1.4.1;Input supply (VIN);80 10.2.1.4.2;Ground pin;80 10.2.1.4.3;Feedback pin;80 10.2.1.4.4;Compensation pin (Vc);82 10.2.1.4.5;Output pin;83 10.2.1.5;Basic switching regulator topologies;84 10.2.1.5.1;Buck converter;84 10.2.1.5.2;Boost regulators;85 10.2.1.5.3;Combined buck-boost regulator;86 10.2.1.5.4;'Cuk converter;86 10.2.1.5.5;Flyback regulator;86 10.2.1.5.6;Forward converter;87 10.2.1.5.7;Current-boosted boost converter;87 10.2.1.5.8;Current-boosted buck converter;87 10.2.1.6;Application circuits;88 10.2.1.6.1;Boost mode (output voltage higher than input);88 10.2.1.6.2;Inductor;89 10.2.1.6.3;Output capacitor;90 10.2.1.6.4;Frequency compensation;90 10.2.1.6.5;Current steering diode;90 10.2.1.6.6;Short-circuit conditions;90 10.2.1.7;Negative buck converter;91 10.2.1.7.1;Output divider;91 10.2.1.7.2;Duty cycle;91 10.2.1.7.3;Inductor;91 10.2.1.7.4;Output capacitor;92 10.2.1.7.5;Output filter;92 10.2.1.7.6;Input filter;93 10.2.1.7.7;Frequency compensation;93 10.2.1.7.8;Catch diode;93 10.2.1.8;Negative-to-positive buck-boost converter;93 10.2.1.8.1;Setting output voltage;94 10.2.1.8.2;Inductor;94 10.2.1.8.3;Output capac
itor;95 10.2.1.8.4;Current steering diode;95 10.2.1.9;Positive buck converter;95 10.2.1.9.1;Duty cycle limitations;96 10.2.1.9.2;Inductor;97 10.2.1.9.3;Output voltage ripple;97 10.2.1.9.4;Output capacitor;97 10.2.1.9.5;Output filter;97 10.2.1.10;Flyback converter;98 10.2.1.10.1;Output divider;99 10.2.1.10.2;Frequency compensation;99 10.2.1.10.3;Snubber design;99 10.2.1.10.4;Output diode (D1);100 10.2.1.10.5;Output capacitor (C1);101 10.2.1.11;Totally isolated converter;102 10.2.1.11.1;Output capacitors;104 10.2.1.11.2;Load and line regulation;104 10.2.1.11.3;Frequency compensation;105 10.2.1.12;Positive current-boosted buck converter;105 10.2.1.13;Negative current-boosted buck converter;106 10.2.1.14;Negative input/negative output flyback converter;107 10.2.1.15;Positive-to-negative flyback converter;107 10.2.1.16;Voltage-boosted boost converter;108 10.2.1.17;Negative boost converter;109 10.2.1.18;Positive-to-negative buck boost converter;109 10.2.1.19;Current-boosted boost converter;109 10.2.1.20;Forward converter;110 10.2.1.21;Frequency compensation;112 10.2.1.21.1;Check margins;114 10.2.1.21.2;Eliminating start-up overshoot;114 10.2.1.22;External current limiting;114 10.2.1.23;Driving external transistors;116 10.2.1.24;Output rectifying diode;117 10.2.1.25;Input filters;119 10.2.1.26;Efficiency calculations;120 10.2.1.26.1;LT1070 operating current;120 10.2.1.26.2;LT1070 switch losses;121 10.2.1.26.3;Output diode losses;121 10.2.1.26.4;Inductor and transformer losses;121 10.2.1.26.5;Snubber losses;121 10.2.1.26.6;Total losses;121 10.2.1.27;Output filters;121 10.2.1.28;Input and output capacitors;123 10.2.1.29;Inductor and transformer basics;123 10.2.1.29.1;Cores with gaps;124 10.2.1.29.2;Inductor selection process;125 10.2.1.29.3;Transformer design example;127 10.2.1.30;Heat sinking information;130 10.2.1.31;Troubleshooting hints;130 10.2.1.32;Warning;130 10.2.1.33;Subharmonic oscillations;131 10.2.1.34;Inductor/transformer manufacturers;139 10.2.1.35;Core manufac
turers;139 10.2.1.36;Bibliography;139 10.2.2;6 -Switching regulators for poets;141 10.2.2.1;Basic flyback regulator;142 10.2.2.2;-48V to 5V telecom flyback regulator;143 10.2.2.3;Fully-isolated telecom flyback regulator;144 10.2.2.4;100W off-line switching regulator;146 10.2.2.5;Switch-controlled motor speed controller;149 10.2.2.6;Switch-controlled peltier reference;149 10.2.2.7;Acknowledgments;150 10.2.3;7 -Step-down switching regulators;159 10.2.3.1;Basic step down circuit;159 10.2.3.2;Practical step-down switching regulator;159 10.2.3.3;Dual output step-down regulator;161 10.2.3.4;Negative output regulators;161 10.2.3.5;Current-boosted step-down regulator;162 10.2.3.6;Post regulation-fixed case;163 10.2.3.7;Post regulation-variable case;163 10.2.3.8;Low quiescent current regulators;163 10.2.3.9;Wide range, high power, high voltage regulator;167 10.2.3.10;Regulated sinewave output DC/AC converter;170 10.2.3.11;References;173 10.2.3.12;Appendix A Physiology of the LT1074;173 10.2.3.13;Appendix BGeneral considerations for switchingregulator design;175 10.2.3.13.1;Inductor selection;176 10.2.4;8 -A monolithic switching regulator with output noise;186 10.2.4.1;Introduction;186 10.2.4.1.1;Switching regulator "noise";186 10.2.4.1.2;A noiseless switching regulator approach;187 10.2.4.1.3;A practical, low noise monolithic regulator;187 10.2.4.1.4;Measuring output noise;188 10.2.4.1.5;System-based noise "measurement";191 10.2.4.1.6;Transition rate effects on noise and efficiency;191 10.2.4.1.7;Negative output regulator;192 10.2.4.1.8;Floating output regulator;192 10.2.4.1.9;Floating bipolar output converter;192 10.2.4.1.10;Battery-powered circuits;194 10.2.4.1.11;Performance augmentation;194 10.2.4.1.12;Low quiescent current regulator;194 10.2.4.1.13;High voltage input regulator;196 10.2.4.1.14;24V-to-5V low noise regulator;198 10.2.4.1.15;10W, 5V to 12V low noise regulator;199 10.2.4.1.16;7500V isolated low noise supply;200 10.2.4.2;References;202 10.2.4.3;Appendix AA hi
story of low noise DC/DC;202 10.2.4.3.1;History;202 10.2.4.3.2;Measuring noise;206 10.2.4.3.3;Low frequency noise;206 10.2.4.3.4;Preamplifier and oscilloscope selection;206 10.2.4.3.5;Ground loops;209 10.2.4.3.6;Pickup;209 10.2.4.3.7;Poor probing technique;209 10.2.4.3.8;Violating coaxial signal transmissionfelony case;210 10.2.4.3.9;Violating coaxial signal transmission misdemeanor case;211 10.2.4.3.10;Proper coaxial connection path;211 10.2.4.3.11;Direct connection path;212 10.2.4.3.12;Test lead connections;212 10.2.4.3.13;Isolated trigger probe;213 10.2.4.3.14;Trigger probe amplifier;213 10.2.4.3.15;Breadboarding and Layout Considerations;217 10.2.4.3.16;5V to 12V Breadboard;218 10.2.4.3.17;5V to 15V breadboard;218 10.2.4.3.18;Demonstration board;218 10.2.4.3.19;Testing ripple rejection;220 10.2.4.3.20;Transformers;222 10.2.4.3.21;Inductors;222 10.2.4.3.22;Hints for lowest noise performance;223 10.2.4.3.23;Noise tweaking;223 10.2.4.3.24;Capacitors;224 10.2.4.3.25;Damper network;224 10.2.4.3.26;Measurement technique;224 10.2.4.3.27;Noise test data;224 10.2.4.3.28;Pot core;225 10.2.4.3.29;ER core;225 10.2.4.3.30;Toroid;227 10.2.4.3.31;E core;227 10.2.4.3.32;Summary;227 10.2.4.3.33;Conclusion;227 10.2.4.3.34;Rectifier reverse recovery;233 10.2.4.3.35;Ringing in clamp Zeners;238 10.2.4.3.36;Paralleled rectifiers;238 10.2.4.3.37;Paralleled snubber or damper caps;238 10.2.4.3.38;Ringing in transformer shield leads;238 10.2.4.3.39;Leakage inductance fields;239 10.2.4.3.40;External air gap fields;239 10.2.4.3.41;Poorly bypassed high speed logic;239 10.2.4.3.42;Probe use with a "LISN" ;239 10.2.4.3.43;Conclusion;240 10.2.4.3.44;Summary;240 10.2.5;9 -Powering complex FPGA-based systems using highly integrated DC/DC Module regulator systems;242 10.2.5.1;Innovation in DC/DC design;242 10.2.5.2;DC/DC Module Regulators: Complete Systems in an LGA Package;242 10.2.5.3;48A from four parallel DC/DC Module regulators;244 10.2.5.4;Start-up, soft-start and current sharing;245 10.2.5
.5;Conclusion;245 10.2.6;10 -Powering complex FPGA-based systemsusing highly integrated DC/DC Module regulator systems;246 10.2.6.1;60W by paralleling four DC/DC Module regulators;246 10.2.6.2;Thermal performance;246 10.2.6.3;Simple copy and paste layout;247 10.2.6.4;Conclusion;248 10.2.7;11 -Diode Turn-On Time Induced Failures in Switching Regulators;249 10.2.7.1;Introduction;249 10.2.7.2;Diode turn-on time perspectives;249 10.2.7.3;Detailed measurement scheme;249 10.2.7.4;Diode Testing and Interpreting Results;253 10.2.7.5;References;254 10.3;Section 3 -Linear Regulator Design;266 10.3.1;12 -Performance verification of low noise, low dropout regulators;267 10.3.1.1;Introduction;267 10.3.1.2;Noise and noise testing;267 10.3.1.3;Noise testing considerations;267 10.3.1.4;Instrumentation performance verification;267 10.3.1.5;Regulator noise measurement;269 10.3.1.6;Bypass capacitor (CBYP) influence;269 10.3.1.7;Interpreting comparative results;269 10.3.1.8;References;269 10.3.1.9;References;269 10.3.1.9.1;Appendix A Architecture of a low noise LDO;276 10.3.1.9.1.1;Noise minimization;276 10.3.1.9.1.2;Pass element considerations;276 10.3.1.9.1.3;Dynamic characteristics;277 10.3.1.9.1.4;Bypass capacitance and low noise performance;278 10.3.1.9.1.5;Output capacitance and transient response;278 10.3.1.9.1.6;Ceramic capacitors;278 10.3.1.9.1.7;AC voltmeter types;279 10.3.1.9.1.8;Rectify and average;279 10.3.1.9.1.9;Analog computation;279 10.3.1.9.1.10;Thermal;280 10.3.1.9.1.11;Performance comparison of noise driven AC voltmeters;280 10.3.1.9.1.12;Thermal voltmeter circuit;281 10.4;Section 4 -High Voltage and High Current Applications;284 10.4.1;13 -Parasitic capacitance effects in step-up transformer design;285 10.4.1.1;Brian Huffman;285 10.4.1.1.1;Appendix A;288 10.4.2;14 -High efficiency, high density, PolyPhase converters for high current applications;289 10.4.2.1;Introduction;289 10.4.2.2;How do PolyPhase techniques affect circuit performance?;289 10.4.2.2.1;Current-sha
ring;290 10.4.2.2.2;Output ripple current cancellation and reduced output ripple voltage;290 10.4.2.2.3;Improved load transient response;292 10.4.2.2.4;Input ripple current cancellation;293 10.4.2.2.5;Input ripple current cancellation;293 10.4.2.3;Design considerations;295 10.4.2.3.1;Selection of phase number;296 10.4.2.3.2;PolyPhase converters using the LTC1629;296 10.4.2.3.3;Layout considerations;296 10.4.2.4;Design example: 100A PolyPhase power supply;298 10.4.2.4.1;Design details;298 10.4.2.4.1.1;MOSFETs;298 10.4.2.4.1.2;Inductors;298 10.4.2.4.1.3;Capacitors;299 10.4.2.4.2;Test results;299 10.4.2.5;Summary;301 10.5;Section 5 -Powering Lasers and Illumination Devices;304 10.5.1;15 -Ultracompact LCD backlight inverters;305 10.5.1.1;Introduction;305 10.5.1.1.1;Limitations and problems of magnetic CCFL transformers;305 10.5.1.1.2;Piezoelectric transformers;305 10.5.1.1.3;Developing a PZT transformer control scheme;306 10.5.1.1.4;Additional considerations and benefits;310 10.5.1.1.5;Display parasitic capacitance and its effects;310 10.5.1.2;References;311 10.5.1.3;Appendix A Piezoelectric transformers;312 10.5.1.3.1;"Good Vibrations";312 10.5.1.3.2;Piezowhat?;312 10.5.1.3.3;Alchemy and black magic;312 10.5.1.3.4;The fun part;313 10.5.1.3.5;A resonant personality;313 10.5.1.3.6;Piezoelectricity;314 10.5.1.3.7;Piezoelectric effect;314 10.5.1.3.8;Axis nomenclature;315 10.5.1.3.9;Electrical-mechanical analogies;315 10.5.1.3.10;Coupling;315 10.5.1.3.11;Electrical, mechanical property changes with load;315 10.5.1.3.12;Elasticity;316 10.5.1.3.13;Piezoelectric equation;316 10.5.1.3.14;Basic piezoelectric modes;316 10.5.1.3.15;Poling;316 10.5.1.3.16;Post Poling;317 10.5.1.3.16.1;Applied voltage;317 10.5.1.3.16.2;Applied force;317 10.5.1.3.16.3;Shear;317 10.5.1.3.17;Piezoelectric benders;317 10.5.1.3.18;Loss;318 10.5.1.3.19;Simplified Piezoelectric Element Equivalent Circuit;318 10.5.1.3.20;Simple stack piezoelectric transformer;318 10.5.1.3.21;Conclusion;322 10.5.2;16 -A ther
moelectric cooler temperaturecontroller for fiber optic lasers;325 10.5.2.1;Introduction;325 10.5.2.2;Temperature Controller Requirements;325 10.5.2.3;Temperature Controller Details;326 10.5.2.4;Thermal Loop Considerations;326 10.5.2.5;Temperature Control Loop Optimization;327 10.5.2.6;Temperature Stability Verification;329 10.5.2.7;Reflected Noise Performance;332 10.5.2.8;References;334 10.5.3;17 -Current sources for fiber optic lasers;336 10.5.3.1;Introduction;336 10.5.3.1.1;Design criteria for fiber optic laser current sources;336 10.5.3.1.2;Detailed discussion of performance issues;336 10.5.3.1.2.1;Required power supply;336 10.5.3.1.2.2;Output current capability;336 10.5.3.1.2.3;Output voltage compliance;336 10.5.3.1.2.4;Efficiency;337 10.5.3.1.2.5;Laser connection;337 10.5.3.1.2.6;Output current programming;337 10.5.3.1.2.7;Stability;337 10.5.3.1.2.8;Noise;337 10.5.3.1.2.9;Transient response;337 10.5.3.1.3;Detailed discussion of laser protection issues;337 10.5.3.1.3.1;Overshoot;337 10.5.3.1.3.2;Enable;337 10.5.3.1.3.3;Output current clamp;337 10.5.3.1.3.4;Open laser protection;337 10.5.3.1.4;Basic current source;337 10.5.3.1.5;High efficiency basic current source;338 10.5.3.1.6;Grounded cathode current source;339 10.5.3.1.7;Single supply, grounded cathode current source;339 10.5.3.1.8;Fully protected, self-enabled, grounded cathode current source;340 10.5.3.1.9;2.5A, grounded cathode current source;342 10.5.3.1.10;0.001% noise, 2A, grounded cathode current source;344 10.5.3.1.11;0.0025% noise, 250mA, grounded anode current source;346 10.5.3.1.12;Low noise, fully floating output current source;346 10.5.3.1.13;Anode-at-supply current source;347 10.5.3.2;References;349 10.5.3.3;Appendix A Simulating the laser load;349 10.5.4;18 -Bias voltage and current sense circuits for avalanche photodiodes;355 10.5.4.1;Introduction;355 10.5.4.1.1;Simple current monitor circuits (with problems);356 10.5.4.1.2;Carrier based current monitor;356 10.5.4.1.3;DC coupled current moni
tor;357 10.5.4.1.4;APD bias supply;358 10.5.4.1.5;APD bias supply and current monitor;359 10.5.4.1.6;Transformer based APD bias supply and current monitor;359 10.5.4.1.7;Inductor based APD bias supply;360 10.5.4.1.8;200V output noise APD bias supply;362 10.5.4.1.9;Low noise APD bias supply and current monitor;363 10.5.4.1.10;0.02% accuracy current monitor;363 10.5.4.1.11;Digital output 0.09% accuracycurrent monitor;364 10.5.4.1.12;Digital output current monitor;364 10.5.4.1.13;Digital output current monitor and APD bias supply;367 10.5.4.2;Summary;367 10.5.4.3;References;370 10.5.4.4;Appendix A Low error feedback signal derivation techniques;370 10.5.4.4.1;Divider current error compensationlow"side"shunt case;370 10.5.4.4.2;Divider current error compensation"high side"shunt case;371 10.5.4.4.3;Ground loops;372 10.5.4.4.4;Pickup;372 10.5.4.4.5;Poor probing technique;372 10.5.4.4.6;Violating coaxial signal transmissionfelony case;372 10.5.4.4.7;Violating coaxial signal transmission misdemeanor case;373 10.5.4.4.8;Proper coaxial connection path;373 10.5.4.4.9;Direct connection path;373 10.5.4.4.10;Test lead connections;374 10.5.4.4.11;Isolated trigger probe;375 10.5.4.4.12;Trigger probe amplifier;375 10.6;Section 6 -Automotive and Industrial Power Design;384 10.6.1;19 -Developments in battery stack voltage measurement;385 10.6.1.1;The battery stack problem;385 10.6.1.2;Transformer based sampling voltmeter;386 10.6.1.3;Detailed circuit operation;386 10.6.1.4;Multi-cell version;388 10.6.1.5;Automatic control and calibration;388 10.6.1.6;Firmware description;392 10.6.1.7;Measurement details;392 10.6.1.8;Adding more channels;393 10.6.1.9;References;394 11;Part 2 -Data Conversion, Signal Conditioning and High Frequency;408 11.1;Section 1 -Data Conversion ;410 11.1.1;20 -Some techniques for direct digitization of transducer outputs;411 11.1.1.1;Jim Williams;411 11.1.2;21 -The care and feeding of high performance ADCs: get all the bits you paid for;423 11.1.2.1;Introduction;4
23 11.1.2.2;An ADC has many "inputs";423 11.1.2.3;Ground planes and grounding;423 11.1.2.4;Supply bypassing;424 11.1.2.5;Reference bypassing;425 11.1.2.6;Driving the analog input;425 11.1.2.6.1;Switched capacitor inputs;425 11.1.2.6.2;Filtering wideband noise from the input signal;426 11.1.2.7;Choosing an op amp;426 11.1.2.8;Driving the convert-start input;426 11.1.2.8.1;Effects of jitter;427 11.1.2.9;Routing the data outputs;428 11.1.2.10;Conclusion;429 11.1.2.10.1;Family features;429 11.1.2.11;High speed A/D converters worlds best power/speed ratio;423 11.1.3;22 -A standards lab grade 20-bit DAC with 0.1ppm/C drift;431 11.1.3.1;Introduction;431 11.1.3.1.1;20-bit DAC architecture;431 11.1.3.1.2;Circuitry details;433 11.1.3.1.3;Linearity considerations;433 11.1.3.1.4;DC performance characteristics;433 11.1.3.1.5;Dynamic performance;433 11.1.3.1.6;Conclusion;435 11.1.3.2;References;435 11.1.3.3;Appendix A A history of high accuracy digital-toanalog conversion;435 11.1.3.3.1;Approach and error considerations;437 11.1.3.3.2;Circuitry details;438 11.1.3.3.3;Construction;441 11.1.3.3.4;Results;441 11.1.3.3.5;Acknowledgments;441 11.1.4;23 -Delta sigma ADC bridge measurement techniques;478 11.1.4.1;Introduction;478 11.1.4.2;Low cost, precision altimeter uses direct digitization;479 11.1.4.3;How Many Bits?;479 11.1.4.4;Increasing Resolution with Amplifiers;479 11.1.4.5;How Much Gain?;481 11.1.4.6;ADC Response to Amplifier Noise;481 11.1.4.7;How Many Bits?;482 11.1.4.8;Faster or More Resolution with the LTC2440;483 11.1.4.9;How Many Bits?;484 11.1.4.9.1;Appendix A Frequency response of an AC excited bridge;485 11.1.4.9.1.1;RMS vs Peak-to-Peak Noise;486 11.1.4.9.1.2;Psychological Factors;486 11.1.5;24 -1ppm settling time measurement for a monolithic 18-bit DAC;497 11.1.5.1;Introduction;497 11.1.5.2;DAC settling time;497 11.1.5.3;Considerations for measuring DAC settling time;498 11.1.5.4;Sampling based high resolution DAC settling time measurement;499 11.1.5.5;Developing a sa
mpling switch;500 11.1.5.6;Electronic switch equivalents;500 11.1.5.7;Transconductance amplifier based switch equivalent;500 11.1.5.8;DAC settling time measurement method;502 11.1.5.9;Detailed settling time circuitry;503 11.1.5.10;Settling time circuit performance;505 11.1.5.11;Using the sampling-based settling time circuit;505 11.1.5.12;References;507 11.1.5.13;Appendix A A history of high accuracy digital-to-analog conversion;508 11.1.5.13.1;Delay compensation;511 11.1.5.13.2;Circuit trimming procedure;511 11.1.5.13.3;Ohm's law;519 11.1.5.13.4;Shielding;520 11.1.5.13.5;Connections;521 11.1.5.13.6;Settling time circuit performance verification;524 11.2;Section 2 -Signal Conditioning;532 11.2.1;25 -Applications for a switched-capacitor instrumentation building block;535 11.2.1.1;Instrumentation amplifier;536 11.2.1.2;Ultrahigh performance instrumentation amplifier;536 11.2.1.3;Lock-in amplifier;537 11.2.1.4;Wide range, digitally controlled, variable gain amplifier;538 11.2.1.5;Precision, linearized platinum RTD signal conditioner;539 11.2.1.6;Relative humidity sensor signal conditioner;540 11.2.1.7;LVDT signal conditioner;541 11.2.1.8;Charge pump F.Vand V.F converters;542 11.2.1.9;12-bit A.D converter;543 11.2.1.10;Miscellaneous circuits;544 11.2.1.11;Voltage-controlled current sourcegrounded source and load;546 11.2.1.12;Current sensing in supply rails;547 11.2.1.13;0.01% analog multiplier;547 11.2.1.14;Inverting a reference;547 11.2.1.15;Low power, 5V driven, temperature compensated crystal oscillator;547 11.2.1.16;Simple thermometer;547 11.2.1.17;High current, "inductorless,"switching regulator;547 11.2.2;26 -Application considerations and circuits for a new chopper-stabilized op amp;549 11.2.2.1;Applications;553 11.2.2.2;Standard grade variable voltage reference;553 11.2.2.3;Ultra-precision instrumentation amplifier;553 11.2.2.4;High performance isolation amplifier;554 11.2.2.5;Stabilized, low input capacitance buffer (FET probe);556 11.2.2.6;Chopper-stabilized
comparator;557 11.2.2.7;Stabilized data converter;558 11.2.2.8;Wide range V.F converter;558 11.2.2.9;1Hz to 30MHz V.F converter;560 11.2.2.10;16-bit A/D converter;560 11.2.2.11;Simple remote thermometer;563 11.2.2.12;Output stages;563 11.2.2.13;References;566 11.2.3;27 -Designing linear circuits for 5V single supply operation;567 11.2.3.1;Linearized RTD signal conditioner;567 11.2.3.2;Linearized output methane detector;568 11.2.3.3;Cold junction compensated thermocouple signal conditioner;569 11.2.3.4;5V powered precision instrumentation amplifier;570 11.2.3.5;5V powered strain gauge signal conditioner;572 11.2.3.6;"Tachless"motor speed controller;572 11.2.3.7;4-20mA current loop transmitter;574 11.2.3.8;Fully isolated limit comparator;575 11.2.3.9;Fully isolated 10-bit A/D converter;576 11.2.4;28 -Application considerations for an instrumentation lowpass filter;580 11.2.4.1;Description;580 11.2.4.2;Tuning the LTC1062;580 11.2.4.3;LTC1062 clock requirements;581 11.2.4.4;Internal oscillator;582 11.2.4.5;Clock feedthrough;582 11.2.4.6;Single 5V supply operation;583 11.2.4.7;Dynamic range and signal/noise ratio;583 11.2.4.8;Step response and burst response;585 11.2.4.9;LTC1062 shows little aliasing;585 11.2.4.10;Cascading the LTC1062;585 11.2.4.11;Using the LTC1062 to create a notch;587 11.2.4.12;Comments on capacitor types;589 11.2.4.13;Clock circuits;589 11.2.4.14;Acknowledgement;590 11.2.5;29 -Micropower circuits for signal conditioning;591 11.2.5.1;Platinum RTD signal conditioner;591 11.2.5.2;Thermocouple signal conditioner;592 11.2.5.3;Sampled strain gauge signal conditioner;592 11.2.5.4;Strobed operation strain gauge bridge signal conditioner;594 11.2.5.5;Thermistor signal conditioner for current loop application;594 11.2.5.6;Microampere drain wall thermostat;595 11.2.5.7;Freezer alarm;596 11.2.5.8;12-Bit A/D converter;596 11.2.5.9;10-Bit, 100A A/D converter;598 11.2.5.10;20s sample-hold;599 11.2.5.11;10kHz voltage-to-frequency converter;600 11.2.5.12;1MHz voltag
e-to-frequency converter;602 11.2.5.13;Switching regulator;603 11.2.5.14;Post regulated micropower switching regulator;604 11.2.6;30 -Thermocouple measurement;613 11.2.6.1;Introduction;613 11.2.6.2;Thermocouples in perspective;613 11.2.6.3;Signal conditioning issues;615 11.2.6.4;Cold junction compensation;615 11.2.6.5;Amplifier selection;617 11.2.6.6;Additional circuit considerations;617 11.2.6.7;Differential thermocouple amplifiers;618 11.2.6.8;Isolated thermocouple amplifiers;618 11.2.6.9;Digital output thermocouple isolator;622 11.2.6.10;Linearization techniques;623 11.2.6.11;References;629 11.2.6.12;Appendix A Error sources in thermocouple systems;629 11.2.7;31 -Take the mystery out of the switched-capacitor filter;631 11.2.7.1;Introduction;631 11.2.7.1.1;Overview;631 11.2.7.1.2;The switched-capacitor filter;631 11.2.7.2;Circuit board layout considerations;632 11.2.7.3;Power supplies;634 11.2.7.4;Input considerations;635 11.2.7.4.1;Offset voltage nulling;635 11.2.7.4.2;Slew limiting;638 11.2.7.4.3;Aliasing;639 11.2.7.5;Filter response;640 11.2.7.5.1;What kind of filter do I use? Butterworth, Chebyshev, Bessel or Elliptic;640 11.2.7.6;Filter sensitivity;644 11.2.7.6.1;How stable is my filter?;644 11.2.7.7;Output considerations;645 11.2.7.7.1;THD and dynamic range;645 11.2.7.7.2;THD in active RC filters;645 11.2.7.7.3;Noise in switched-capacitor filters;645 11.2.7.7.4;Bandpass filters and noisean illustration;647 11.2.7.8;Clock circuitry;647 11.2.7.8.1;Jitter;647 11.2.7.8.2;Clock synchronization with A/D sample clock;649 11.2.7.8.3;Clock feedthru;649 11.2.7.9;Conclusions;650 11.2.7.10;Bibliography;654 11.2.8;32 -Bridge circuits;655 11.2.8.1;Resistance bridges;655 11.2.8.2;Bridge output amplifiers;655 11.2.8.3;DC bridge circuit applications;656 11.2.8.4;Common mode suppression techniques;656 11.2.8.5;Single supply common mode suppression circuits;659 11.2.8.6;Switched-capacitor based instrumentation amplifiers;662 11.2.8.7;Optically coupled switched-capacitor instr
umentation amplifier;663 11.2.8.8;Platinum RTD resistance bridge circuits;664 11.2.8.9;Digitally corrected platinum resistance bridge;665 11.2.8.10;Thermistor bridge;670 11.2.8.11;Low power bridge circuits;670 11.2.8.12;Strobed power bridge drive;672 11.2.8.13;Sampled output bridge signal conditioner;672 11.2.8.14;Continuous output sampled bridge signal conditioner;673 11.2.8.15;High resolution continuous output sampled bridge signal conditioner;674 11.2.8.16;AC driven bridge/synchronous demodulator;676 11.2.8.17;AC driven bridge for level transduction;676 11.2.8.18;Time domain bridge;677 11.2.8.19;Bridge oscillatorsquare wave output;678 11.2.8.20;Quartz stabilized bridge oscillator;679 11.2.8.21;Sine wave output quartz stabilized bridge oscillator;679 11.2.8.22;Wien bridge-based oscillators;680 11.2.8.23;Diode bridge-based 2.5MHz precision rectifier/AC voltmeter;683 11.2.8.24;References;686 11.2.9;33 -High speed amplifier techniques;696 11.2.9.1;Preface;696 11.2.9.2;Introduction;697 11.2.9.3;Perspectives on high speed design;697 11.2.9.4;Mr. Murphy's gallery of high speed amplifier problems;697 11.2.9.5;Tutorial Section;705 11.2.9.5.1;About Cables, Connectors and Terminations;706 11.2.9.5.2;About Probes and Probing Techniques;707 11.2.9.5.3;About Oscilloscopes;710 11.2.9.5.4;About Ground Planes;714 11.2.9.5.5;About Bypass Capacitors;715 11.2.9.5.6;Breadboarding Techniques;715 11.2.9.5.7;Oscillation;718 11.2.9.6;Applications Section IAmplifiers;655 11.2.9.6.1;Fast 12-bit digital-to-analog converter (DAC) amplifier;720 11.2.9.6.2;2-Channel Video Amplifier;721 11.2.9.6.3;Simple Video Amplifier;721 11.2.9.6.4;Loop Through Cable Receivers;721 11.2.9.6.5;DC stabilization — summing point technique;721 11.2.9.6.6;DC stabilization — differentially sensed technique;722 11.2.9.6.7;DC stabilization — servo controlled FET input stage;722 11.2.9.6.8;DC stabilization — full differential inputs with parallel paths;723 11.2.9.6.9;DC stabilization — ful
l differential inputs, gain-of-1000 with parallel paths;724 11.2.9.6.10;High Speed Differential Line Receiver;725 11.2.9.6.11;Transformer Coupled Amplifier;726 11.2.9.6.12;Differential Comparator Amplifier with Adjustable Offset;727 11.2.9.6.13;Differential Comparator Amplifier with Settable Automatic Limiting and Offset;728 11.2.9.6.14;Photodiode Amplifier;729 11.2.9.6.15;Fast Photo Integrator;730 11.2.9.6.16;Fiber Optic Receiver;731 11.2.9.6.17;40MHz fiber optic receiver with adaptive trigger;731 11.2.9.6.18;50MHz high accuracy analog multiplier;731 11.2.9.6.19;Power Booster Stage;732 11.2.9.6.20;High Power Booster Stage;734 11.2.9.6.21;Ceramic Bandpass Filters;735 11.2.9.6.22;Crystal Filter;736 11.2.9.7;Applications Section II Oscillators;736 11.2.9.7.1;Sine Wave Output Quartz Stabilized Oscillator;736 11.2.9.7.2;Sine Wave Output Quartz Stabilized Oscillator with Electronic Gain Control;736 11.2.9.7.3;DC Tuned 1MHz-10MHz Wien Bridge Oscillator;737 11.2.9.7.4;Complete AM radio station;738 11.2.9.8;Applications section IIIData conversion;739 11.2.9.8.1;1Hz1MHz voltage-controlled sine wave oscillator;739 11.2.9.8.2;1Hz–10MHz V→F Converter;741 11.2.9.8.3;8-bit, 100ns sample-hold;743 11.2.9.8.4;15ns current summing comparator;744 11.2.9.8.5;50MHz adaptive threshold trigger circuit;744 11.2.9.8.6;Fast Time-to-Height (Pulsewidth-to-Voltage) Converter;745 11.2.9.8.7;True RMS wideband voltmeter;747 11.2.9.9; Applications Section Iv Miscellaneous Circuits ;749 11.2.9.9.1;RF Leveling Loop;749 11.2.9.9.2;Voltage Controlled Current Source;750 11.2.9.9.3;High Power Voltage Controlled Current Source;750 11.2.9.9.4;18ns circuit breaker;751 11.2.9.10;References;752 11.2.9.10.1;Appendix A ABCs of probes Tektronix, Inc;753 11.2.9.10.1.1;ABC's of probes Tektronix, Inc;753 11.2.9.10.1.2;The vital link in your measurement system;753 11.2.9.10.1.3;Why not use a piece of wire?;753 11.2.9.10.1.4;Benefits of using probes;755 11.2.9.10.1.5;How probes affect your measurements;755
11.2.9.10.1.6;Scope Bandwidth at the Probe Tip?;760 11.2.9.10.1.7;How ground leads affect measurements;761 11.2.9.10.1.8;How probe design affects your measurements;762 11.2.9.10.1.9;Tips on using probes;763 11.2.9.10.1.10;Introduction:;764 11.2.9.10.1.11;Measuring Amplifier Settling Time;771 11.2.9.10.1.12;The Oscillation Problem Frequency Compensation Without Tears;775 11.2.9.10.1.13;Measuring Probe-Oscilloscope Response;781 11.2.9.10.1.14;An Ultra-Fast High Impedance Probe;783 11.2.9.10.1.15;Additional Comments on Breadboarding;785 11.2.9.10.1.16;FCC licensing and construction permit applications for commerical AM broadcasting stations;811 11.2.9.10.1.17;About Current Feedback;812 11.2.9.10.1.18;Current Feedback Basics;812 11.2.9.10.1.19;High Frequency Amplifier Evaluation Board;814 11.2.9.10.1.20;The contributions of Edsel Murphy to the understanding of the behavior of inanimate objects;816 11.2.9.10.1.21;I. Introduction;817 11.2.9.10.1.22;II. General Engineering;817 11.2.9.10.1.23;III. Mathematics;817 11.2.9.10.1.24;IV. Prototyping and Production;817 11.2.9.10.1.25;V. Specifying;818 11.2.9.11;References*;818 11.2.10;34 -A seven-nanosecond comparator for single supply operation;819 11.2.10.1;Introduction;819 11.2.10.2;The LT1394 an overview;820 11.2.10.2.1;The rogue's gallery of high speed comparator problems;821 11.2.10.3;Tutorial section;824 11.2.10.3.1;About pulse generators;824 11.2.10.3.2;About cables, connectors and terminations;824 11.2.10.3.3;About probes and probing techniques;825 11.2.10.3.4;About oscilloscopes;829 11.2.10.3.5;About ground planes;832 11.2.10.3.6;About bypass capacitors;833 11.2.10.3.7;Breadboarding techniques;834 11.2.10.4;Applications;835 11.2.10.4.1;Crystal oscillators;835 11.2.10.4.2;Switchable output crystal oscillator;836 11.2.10.4.3;Temperature-compensated crystal oscillator (TXCO);836 11.2.10.4.4;Voltage-controlled crystal oscillator (VCXO);837 11.2.10.4.5;Voltage-tunable clock skew generator;838 11.2.10.4.6;Simple 10MHz voltage
-to-frequency converter;839 11.2.10.4.7;Precision 1Hz to 10MHz voltage-to-frequency converter;840 11.2.10.4.8;Fast, high impedance, variable threshold trigger;842 11.2.10.4.9;High speed adaptive trigger circuit;842 11.2.10.4.10;18ns, 500V sensitivity comparator;843 11.2.10.4.11;Voltage-controlled delay;844 11.2.10.4.12;10ns sample-and-hold;845 11.2.10.4.13;Programmable, sub-nanosecond delayed pulse generator;846 11.2.10.4.14;Fast pulse stretcher;848 11.2.10.4.15;20ns response overvoltage protection circuit;849 11.2.10.5;References;851 11.2.10.6;Appendix A About level shifts;851 11.2.11;35 -Understanding and applying voltage references;856 11.2.11.1;Essential features;858 11.2.11.2;Reference pitfalls;859 11.2.11.2.1;Current-hungry loads;859 11.2.11.2.2;"NC" pins ;860 11.2.11.2.3;Board leakage;860 11.2.11.2.4;Trim-induced temperature drift;860 11.2.11.2.5;Burn-in;861 11.2.11.2.6;Board stress;861 11.2.11.2.7;Temperature-induced noise;862 11.2.11.3;Reference applications;863 11.2.11.4;Conclusion;864 11.2.11.5;For further reading;864 11.2.11.6;Appendix A Buried Zener: low longterm driftand noise;864 11.2.12;36 -Instrumentation applications for a monolithic oscillator;867 11.2.12.1;Introduction;867 11.2.12.1.1;Clock types;867 11.2.12.1.2;A (very) simple, high performance oscillator;868 11.2.12.1.3;Platinum RTD digitizer;868 11.2.12.1.4;Thermistor-to-frequency converter;869 11.2.12.1.5;Isolated, 3500V breakdown, thermistor-to-frequency converter;870 11.2.12.1.6;Relative humidity sensor digitizer-hetrodyne based;871 11.2.12.1.7;Relative humidity sensor digitizercharge pump based ;872 11.2.12.1.8;Relative humidity sensor digitizertime domain bridge based ;873 11.2.12.1.9;40nV noise, 0.05V/C drift, chopped bipolar amplifier ;873 11.2.12.1.10;45nV noise, 0.05V/C drift, chopped FET amplifier ;875 11.2.12.1.11;Clock tunable, filter based sine wave generator;877 11.2.12.1.12;Clock tunable, memory based sine wave generator;877 11.2.12.1.13;Clock tunable notch filter;879 11.2.12.1.
14;Clock tunable interval generator with 20 x 106:1 dynamic range ;880 11.2.12.1.15;8-bit, 80s, passive input, A/D converter ;881 11.2.12.2;References;882 11.2.13;37 -Slew rate verification for wideband amplifiers;885 11.2.13.1;Introduction;885 11.2.13.1.1;Amplifier dynamic response;885 11.2.13.1.1.1;LT1818 Short form specifications;886 11.2.13.1.2;Pulse generator rise time effects on measurement;886 11.2.13.1.3;Subnanosecond rise time pulse generators;887 11.2.13.1.4;360ps rise time pulse generator;887 11.2.13.1.5;Circuit optimization;888 11.2.13.1.6;Refining slew rate measurement;890 11.2.13.2;References;892 11.2.13.3;Appendix A Verifying rise time measurement integrity;892 11.2.14;38 -Instrumentation circuitry using RMS-to-DC converters;896 11.2.14.1;Introduction;896 11.2.14.1.1;Isolated power line monitor;896 11.2.14.1.2;Fully isolated 2500V breakdown, wideband RMS-to-DC converter;898 11.2.14.1.3;Low distortion AC line RMS voltage regulator;899 11.2.14.1.4;X1000 DC stabilized millivolt preamplifier;901 11.2.14.1.5;Wideband decade ranged x 1000 preamplifier ;901 11.2.14.1.6;Wideband, isolated, quartz crystal RMS current measurement;902 11.2.14.1.7;AC voltage standard with stable frequency and low distortion;904 11.2.14.1.8;RMS leveled output random noise generator;905 11.2.14.1.9;RMS amplitude stabilized level controller;906 11.2.14.2;References;908 11.2.14.3;Appendix A RMS-to-DC conversion Joseph Petrofsky;908 11.2.15;39 -775 nanovolt noise measurement for a low noise voltage reference;913 11.2.15.1;Introduction;913 11.2.15.2;Noise measurement;913 11.2.15.3;Noise measurement circuit performance;914 11.2.15.4;References;917 11.2.15.5;Appendix A Mechanical and layout considerations;918 11.2.15.6;Appendix BInput capacitor selection procedure;918 11.2.15.7;Appendix CPower, grounding and shieldingconsiderations;919 11.3;Section 3 -High Frequency/RF Design;922 11.3.1;40 -LT5528 WCDMA ACPR, AltCPR and noise measurements;923 11.3.1.1;Introduction;923 11.3.2;41 -Measurin
g phase and delay errors accurately in I/Q modulators;927 11.3.2.1;Introduction;927 11.3.2.2;Measurements;929 11.3.2.2.1;First measurementnull out the I/Q modulator image signal with normal signal connections (Figure 41.6) ;929 11.3.2.2.2;Second measurementnull out the I/Q modulator image signal with reversed differential baseband signals to the modulator's differential I-channel inputs (Figure 41.7) ;930 11.3.2.2.3;Third measurementnull out the I/Q modulator image signal after reversing the I and Q inputs to the modulator (Figure 41.8) ;930 11.3.2.2.4;Calculation of phase impairments;931 11.3.2.3;Applying the method;932 11.3.2.4;Conclusion;932 12;Subject Index;934


Technik

Dieses eBook wird im epub-Format geliefert und ist mit einem Adobe DRM-Kopierschutz versehen. Sie können dieses eBook auf vielen gängigen Endgeräten lesen.

Sie können dieses eBook auf vielen gängigen Endgeräten lesen.

Für welche Geräte?
Sie können das eBook auf allen Lesegeräten, in Apps und in Lesesoftware öffnen, die epub und Adobe DRM unterstützen:

  • tolino Reader
    Öffnen Sie das eBook nach der automatischen Synchronisation auf dem Reader oder übertragen Sie das eBook auf Ihr tolino Gerät mit einer kostenlosen Software wie beispielsweise Adobe Digital Editions.

  • Sony Reader und andere eBook Reader
    Laden Sie das eBook direkt auf dem Reader im eBook.de-Shop herunter oder übertragen Sie das eBook mit der kostenlosen Software Sony READER FOR PC/Mac oder Adobe Digital Editions auf ein Standard-Lesegeräte mit epub- und Adobe DRM-Unterstützung.

  • Tablets und Smartphones
    Installieren Sie die eBook.de READER App für Android und iOS oder verwenden Sie eine andere Lese-App für epub-eBooks mit Adobe DRM.

  • PC und Mac
    Lesen Sie das eBook direkt nach dem Herunterladen über "Jetzt lesen" im Browser, oder mit der kostenlosen Lesesoftware Adobe Digital Editions.

Schalten Sie das eBook mit Ihrer persönlichen Adobe ID auf bis zu sechs Geräten gleichzeitig frei.

Bitte beachten Sie: Dieses eBook ist nicht auf Kindle-Geräten lesbar.

Ihr erstes eBook?
Hier erhalten Sie alle Informationen rund um die digitalen Bücher für Neueinsteiger.

EAN: 9780123851864
Untertitel: A Tutorial Guide to Applications and Solutions. 200:Adobe eBook. Sprache: Englisch.
Verlag: Elsevier Science
Erscheinungsdatum: September 2011
Seitenanzahl: 960 Seiten
Format: epub eBook
Kopierschutz: Adobe DRM
Es gibt zu diesem Artikel noch keine Bewertungen.Kundenbewertung schreiben