The Dense Sphere Packings

€ 55,99
Lieferbar innert 2 Wochen
September 2012



The 400-year-old Kepler conjecture asserts that no packing of congruent balls in three dimensions can have a density exceeding the familiar pyramid-shaped cannonball arrangement. In this book, a new proof of the conjecture is presented that makes it accessible for the first time to a broad mathematical audience. The book also presents solutions to other previously unresolved conjectures in discrete geometry, including the strong dodecahedral conjecture on the smallest surface area of a Voronoi cell in a sphere packing, and Fejes Tóth's conjecture describing all packings of congruent balls in which every ball touches twelve others. This book is also currently being used as a blueprint for a large-scale formal proof project, which aims to check every logical inference of the proof of the Kepler conjecture by computer. This is an indispensable resource for those who want to be brought up to date with research on the Kepler conjecture.


1. Close packing; 2. Trigonometry; 3. Volume; 4. Hypermap; 5. Fan; 6. Packing; 7. Local fan; 8. Tame hypermap; 9. Further results.


Professor Thomas Hales is Andrew Mellon Professor at the University of Pittsburgh. He is best known for his solution to the 400-year-old Kepler conjecture and is also known for the proof of the honeycomb conjecture. He is currently helping to develop technology that would allow computers to do mathematical proofs. His honors include the Chauvenet Prize of the MAA, the R. E. Moore Prize, the Lester R. Ford Award of the MAA, the Robbins Prize of the AMS and the Fulkerson Prize of the Mathematical Programming Society.
EAN: 9780521617703
ISBN: 0521617707
Untertitel: A Blueprint for Formal Proofs. 'London Mathematical Society Lecture Note Series'. Illustrations. Sprache: Englisch.
Verlag: Cambridge University Press
Erscheinungsdatum: September 2012
Seitenanzahl: 286 Seiten
Format: kartoniert
Es gibt zu diesem Artikel noch keine Bewertungen.Kundenbewertung schreiben