EBOOK

Entdeckbarkeitstheorie. Eine Theorie über die Frage, ob mathematische Objekte von Menschenhand geschaffen sind

eBook
€ 12,99
Print-Ausgabe € 13,99
 
pdf eBook
Sofort lieferbar (Download)
Februar 2015

Beschreibung

Beschreibung

Wissenschaftlicher Aufsatz aus dem Jahr 2014 im Fachbereich Mathematik - Sonstiges, Note: 1,0, Technische Universität Darmstadt, Sprache: Deutsch, Abstract: Die Entdeckbarkeitstheorie ist eine Theorie der philosophischen Mathematik, die sich mit der Existenz derjenigen Objekte beschäftigt, mit denen Mathematik gemacht wird. In den ¿Grundlagen der Arithmetik¿ fasst Gottlob Frege kurz und prägnant den philosophischen Kerngedanken der Entdeckbarkeitstheorie zusammen: Mathematische Objekte sind nicht von Menschenhand geschaffen, sie existieren unabhängig von menschlichem Denken. Der Mensch benennt mathematische Objekte, um mit ihnen arbeiten zu können. Das Definieren ist dabei aber kein existenzschaffender Prozess, es ist lediglich eine Taufe, eine Namensgebung für bereits Existierendes. Grundlegend für die Definition aller mathematischen Objekte ist die Definition des Begriffs Menge. Georg Cantor definierte 1895 eine Menge als ¿jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die ¿Elemente¿ von M genannt werden) zu einem Ganzen.¿ John von Neumann lieferte ein mengentheoretisches Modell zur Definition der natürlichen Zahlen, also für die elementarsten mathematischen Objekte. Die Entdeckbarkeitstheorie basiert auf von Neumanns Definition der natürlichen Zahlen und muss daher nicht auf die Peano-Axiome eingehen. Die von Neumann¿sche Definition der natürlichen Zahlen motiviert das Axiomensystem der Entdeckbarkeitstheorie, aus dem die zwei Kernresultate der Entdeckbarkeitstheorie folgen: Alle mathematischen Objekte sind entdeckbar (Entdeckbarkeitscharakteristik). Aus entdeckbaren mathematischen Objekten können nur entdeckbare mathematische Objekte konstruiert werden (Hauptsatz der Entdeckbarkeitstheorie). Aus der Entdeckbarkeitscharakteristik und dem Hauptsatz der Entdeckbarkeitstheorie folgt, dass der Mensch keine mathematischen Objekte schafft, sondern mit a priori existenten Objekten arbeitet. Das Ziel dieser Arbeit ist es, ausgehend von der Entdeckbarkeit der natürlichen Zahlen, die unmittelbar aus dem Axiomensystem folgt, die Entdeckbarkeitscharakteristik und den Hauptsatz der Entdeckbarkeitstheorie zu beweisen. Außerdem soll auf die philosophische Bedeutung der Entdeckbarkeitstheorie eingegangen werden.

Technik

Dieses eBook wird im PDF-Format ohne Kopierschutz geliefert. Sie können dieses eBook auf vielen gängigen Endgeräten lesen.

Sie können dieses eBook auf vielen gängigen Endgeräten lesen.

Für welche Geräte?
Sie können das eBook auf allen Lesegeräten, in Apps und in Lesesoftware öffnen, die PDF unterstützen:

  • tolino Reader
    Öffnen Sie das eBook nach der automatischen Synchronisation auf dem Reader oder übertragen Sie das eBook auf Ihr tolino Gerät mit einer kostenlosen Software wie beispielsweise Adobe Digital Editions.

  • Sony Reader und andere eBook Reader
    Laden Sie das eBook direkt auf dem Reader im eBook.de-Shop herunter oder übertragen Sie es mit der kostenlosen Software Sony READER FOR PC/Mac oder Adobe Digital Editions.

  • Tablets und Smartphones
    Installieren Sie die eBook.de READER App für Android und iOS oder verwenden Sie eine andere Lese-App für PDF-eBooks.

  • PC und Mac
    Lesen Sie das eBook direkt nach dem Herunterladen über "Jetzt lesen" im Browser, oder mit der kostenlosen Lesesoftware Adobe Digital Editions.

Bitte beachten Sie: Dieses eBook ist nicht auf Kindle-Geräten lesbar.

Ihr erstes eBook?
Hier erhalten Sie alle Informationen rund um die digitalen Bücher für Neueinsteiger.

EAN: 9783656889144
Untertitel: Dateigröße in KByte: 1007.
Verlag: GRIN Verlag
Erscheinungsdatum: Februar 2015
Seitenanzahl: 20 Seiten
Format: pdf eBook
Kopierschutz: Keiner
Es gibt zu diesem Artikel noch keine Bewertungen.Kundenbewertung schreiben