Image Mosaicing and Super-resolution

€ 149,99
Sofort lieferbar
Januar 2004



This book investigates sets of images consisting of many overlapping viewsofa scene, and how the information contained within them may be combined to produce single images of superior quality. The generic name for such techniques is frame fusion. Using frame fusion, it is possible to extend the fieldof view beyond that ofany single image, to reduce noise, to restore high-frequency content, and even to increase spatial resolution and dynamic range. The aim in this book is to develop efficient, robust and automated frame fusion algorithms which may be applied to real image sequences. An essential step required to enable frame fusion is image registration: computing the point-to-point mapping between images in their overlapping region. This sub­ problem is considered in detail, and a robust and efficient solution is proposed and its accuracy evaluated. Two forms of frame fusion are then considered: image mosaic­ ing and super-resolution. Image mosaicing is the alignment of multiple images into a large composition which represents part of a 3D scene. Super-resolution is a more sophisticated technique which aims to restore poor-quality video sequences by mod­ elling and removing the degradations inherent in the imaging process, such as noise, blur and spatial-sampling. A key element in this book is the assumption of a completely uncalibrated cam­ era. No prior knowledge of the camera parameters, its motion, optics or photometric characteristics is assumed. The power of the methods is illustrated with many real image sequence examples.


1 Introduction.- 1.1 Background.- 1.2 Modelling assumptions.- 1.3 Applications.- 1.4 Principal contributions.- 2 Literature Survey.- 2.1 Image registration.- 2.1.1 Registration by a geometric transformation.- 2.1.2 Ensuring global consistency.- 2.1.3 Other parametric surfaces.- 2.2 Image mosaicing.- 2.3 Super-resolution.- 2.3.1 Simple super-resolution schemes.- 2.3.2 Methods using a generative model.- 2.3.3 Super-resolution using statistical prior image models.- 3 Registration: Geometric and Photometric.- 3.1 Introduction.- 3.2 Imaging geometry.- 3.3 Estimating homographies.- 3.3.1 Linear estimators.- 3.3.2 Non-linear refinement.- 3.3.3 The maximum likelihood estimator of H.- 3.4 A practical two-view method.- 3.5 Assessing the accuracy of registration.- 3.5.1 Assessment criteria.- 3.5.2 Obtaining a ground-truth homography.- 3.6 Feature-based vs. direct methods.- 3.7 Photometric registration.- 3.7.1 Sources of photometric difference.- 3.7.2 The photometric model.- 3.7.3 Estimating the parameters.- 3.7.4 Results.- 3.8 Application: Recovering latent marks in forensic images.- 3.8.1 Motivation.- 3.8.2 Method.- 3.8.3 Further examples.- 3.9 Summary.- 4 Image Mosaicing.- 4.1 Introduction.- 4.2 Basic method.- 4.2.1 Outline.- 4.2.2 Practical considerations.- 4.3 Rendering from the mosaic.- 4.3.1 The reprojection manifold.- 4.3.2 The blending function.- 4.3.3 Eliminating seams by photometric registration.- 4.3.4 Eliminating seams due to vignetting.- 4.3.5 A fast alternative to median filtering.- 4.4 Simultaneous registration of multiple views.- 4.4.1 Motivation.- 4.4.2 Extending the two-view framework to N-views.- 4.4.3 A novel algorithm for feature-matching over N-views.- 4.4.4 Results.- 4.5 Automating the choice of reprojection frame.- 4.5.1 Motivation.- 4.5.2 Synthetic camera rotations.- 4.6 Applications of image mosaicing.- 4.7 Mosaicing non-planar surfaces.- 4.8 Mosaicing "user's guide".- 4.9 Summary.- 4.9.1 Further examples.- 5 Super-resolution: Maximum Likelihood and Related Approaches.- 5.1 Introduction.- 5.2 What do we mean by "resolution"?.- 5.3 Single-image methods.- 5.4 The multi-view imaging model.- 5.4.1 A note on the assumptions made in the model.- 5.4.2 Discretization of the imaging model.- 5.4.3 Related approaches.- 5.4.4 Computing the elements in Mn.- 5.4.5 Boundary conditions.- 5.5 Justification for the Gaussian PSF.- 5.6 Synthetic test images.- 5.7 The average image.- 5.7.1 Noise robustness.- 5.8 Rudin's forward-projection method.- 5.9 The maximum-likelihood estimator.- 5.10 Predicting the behaviour of the ML estimator.- 5.11 Sensitivity of the ML estimator to noise sources.- 5.11.1 Observation noise.- 5.11.2 Poorly estimated PSF.- 5.11.3 Inaccurate registration parameters.- 5.12 Irani and Peleg's method.- 5.12.1 Least-squares minimization by steepest descent.- 5.12.2 Irani and Peleg's algorithm.- 5.12.3 Relationship to the ML estimator.- 5.12.4 Convergence properties.- 5.13 Gallery of results.- 5.14 Summary.- 6 Super-resolution Using Bayesian Priors.- 6.1 Introduction.- 6.2 The Bayesian framework.- 6.2.1 Markov random fields.- 6.2.2 Gibbs priors.- 6.2.3 Some common cases.- 6.3 The optimal Wiener filter as a MAP estimator.- 6.4 Generic image priors.- 6.5 Practical optimization.- 6.6 Sensitivity of the MAP estimators to noise sources.- 6.6.1 Exercising the prior models.- 6.6.2 Robustness to image noise.- 6.7 Hyper-parameter estimation by cross-validation.- 6.8 Gallery of results.- 6.9 Super-resolution "user's guide".- 6.10 Summary.- 7 Super-resolution Using Sub-space Models.- 7.1 Introduction.- 7.2 Bound constraints.- 7.3 Learning a face model using PCA.- 7.4 Super-resolution using the PCA model.- 7.4.1 An ML estimator (FS-ML).- 7.4.2 MAP estimators.- 7.5 The behaviour of the face model estimators.- 7.6 Examples using real images.- 7.7 Summary.- 8 Conclusions and Extensions.- 8.1 Summary.- 8.2 Extensions.- 8.2.1 Application to digital video.- 8.2.2 Model-based super-resolution.- 8.3 Final observations.- A Large-scale Linear and Non-linear Optimization.- References.
EAN: 9781852337711
ISBN: 1852337710
Untertitel: Diss. 'Distinguished Dissertations'. Sprache: Englisch.
Verlag: Springer-Verlag GmbH
Erscheinungsdatum: Januar 2004
Seitenanzahl: 240 Seiten
Format: gebunden
Es gibt zu diesem Artikel noch keine Bewertungen.Kundenbewertung schreiben