Analysis of Spherical Symmetries in Euclidean Spaces

€ 150,99
Lieferbar innerhalb von 2-3 Tagen
November 1997



This self-contained book offers a new and direct approach to the theories of special functions with emphasis on spherical symmetry in Euclidean spaces of arbitrary dimensions. Written after many years of lecturing to mathematicians, physicists and engineers in scientific research institutions in Europe and the USA, it uses elementary concepts to present the spherical harmonics in a theory of invariants of the orthogonal group. One of the highlights of this book is the extension of the classical results of the spherical harmonics into the complex. This is particularly important for the complexification of the Funk-Hecke formula which successfully leads to new integrals for Bessel- and Hankel functions with many applications of Fourier integrals and Radon transforms. Exercises have been included to stimulate mathematical ingenuity and to bridge the gap between well known elementary results and their appearance in the new formations.


1 Notations and Basic Theorems>.- 1 The General Theory 9.- §2 Primitive Spaces.- §3 The Completeness.- §4 The Funk-Hecke Formula.- §5 Representations and Interpolations.- §6 Homogeneous Harmonics.- 2 The Specific Theories.- §7 The Legendre Polynomials.- §8 The Laplace Integrals.- §9 The Gegenbauer Polynomials.- §10 The Associated Legendre Functions.- §1 The Associated Spaces yjn(q).- §12 Harmonic Differential Operators.- §13 Maxwell's Theory of Multipoles.- 3 Spherical Harmonics and Differential Equations.- §14 The Laplace-Beltrami Operators.- §15 Spherical Harmonics as Eigenfunctions.- §16 The Legendre Differential Equation.- §17 The Legendre Functions as Hypergeometric Functions.- 4 Analysis on the Complex Unit Spheres.- §18 Homogeneous Harmonics in ?q.- §19 Invariant Integrals on S*q-1.- §20 Complexification of the Funk-Hecke Formula.- §21 An Alternative System of Legendre Functions.- 5 The Bessel Functions.- §22 Regular Bessel Functions.- §23 Regular Hankel Functions.- §24 Recursive and Asymptotic Relations.- §25 Addition Formulas for Hankel Functions of Order Zero.- §26 Exponential Integrals with Bessel Functions.- §27 The Traditional Notations.- 6 Integral Transforms.- §28 Fourier Integrals.- §29 The Fourier Representation Theorem.- §30 The Parseval Identity.- §31 Examples.- 7 The Radon Transform.- §32 Radon Transforms and Fourier Transforms.- §33 Radon Transforms and Spherical Symmetries.- §34 The Nicholson Formulas.- 8 Appendix.- §35 The ?-Function..- §36 The Hypergeometric Function.- §37 Elementary Asymptotics.- References.
EAN: 9780387949499
ISBN: 0387949496
Untertitel: 'Applied Mathematical Sciences'. 1998. Auflage. Book. Sprache: Englisch.
Verlag: Springer
Erscheinungsdatum: November 1997
Seitenanzahl: 238 Seiten
Format: gebunden
Es gibt zu diesem Artikel noch keine Bewertungen.Kundenbewertung schreiben